Strong and Weak Limit Points of a Normalized Random Walk
نویسندگان
چکیده
منابع مشابه
Central Limit Theorem in Multitype Branching Random Walk
A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.
متن کاملLimit points for normalized Laplacian eigenvalues
Limit points for the positive eigenvalues of the normalized Laplacian matrix of a graph are considered. Specifically, it is shown that the set of limit points for the j-th smallest such eigenvalues is equal to [0, 1], while the set of limit points for the j-th largest such eigenvalues is equal to [1, 2]. Limit points for certain functions of the eigenvalues, motivated by considerations for rand...
متن کاملa generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
Fixed Points for Strong and Weak Dominance
In this note, we provide fixed-point characterizations for two solution concepts in finite games: bestresponse sets (BRS’s) and self-admissible sets (SAS’s). The BRS concept is due to Pearce [7, 1984]. The SAS concept is a weak-dominance analog to a BRS, and is due to BrandenburgerFriedenberg-Keisler [4, 2006]. BRS’s are important because they characterize the epistemic condition of rationality...
متن کاملSelf-normalized Weak Limit Theorems for a Φ-mixing Sequence
Let {Xj , j ≥ 1} be a strictly stationary φ-mixing sequence of non-degenerate random variables with EX1 = 0. In this paper, we establish a self-normalized weak invariance principle and a central limit theorem for the sequence {Xj} under the condition that L(x) := EX2 1 I{|X1| ≤ x} is a slowly varying function at ∞, without any higher moment conditions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Probability
سال: 1974
ISSN: 0091-1798
DOI: 10.1214/aop/1176996604